

Primary Pneumococcal peritonitis in a 12-year-old adolescent

S. Chemli¹, F. Azouzi^{1,} S. Mabrouk², S. Boughattas¹ H. Ajmi², S. Nouir², L. Tilouche¹, Y. Ben Lamine¹, S. Ketata¹, J. Chemli², A. Trabelsi¹

- 1. Laboratory of microbiology, Sahloul University Hospital, Sousse, Tunisia
- 2. Pediatric department, Sahloul University Hospital, Sousse, Tunisia

Introduction

Streptococcus pneumoniae infections are usually associated with a high morbidity and mortality burden. Pneumococcus is frequently the cause of pneumonia, or purulent meningitis. Spontaneous pneumococcal peritonitis remains rarely described.

The purpose was to describe the clinical features of a pneumococcal primary peritonitis and the microbiological findings leading to this diagnosis.

Case report

Age: 12 years old

Medicalhistory:corticosteroid-dependent nephrotic syndromeClinicalsymptoms:Acuteonsetof

abdominal pain+ vomiting+ fever Examination: Fever 39°C

- -Pulse rate: 89 bpm
- -Blood pressure :123/61 mmHg

-Abdominal exam: Distension, diffuse pain and tenderness.

Presumed diagnosis: Primary peritonitis. Empiric treatment: Cefotaxime, gentamicin and metronidazole.

Laboratory work-up:

-High inflammatory markers

-Blood cultures: Within the first 24 hours, BACT/ALERT system detected significant bacterial growth. After 3 days of incubation, subcultures on blood agar yielded α -hemolytic optochin susceptible colonies (Figure 1).

Figure: S. pneumoniae colonies on blood agar

VITEK[®] 2 (bioMérieux, France) confirmed Streptococcus pneumoniae with reduced susceptibility to penicillin. The susceptibility pattern of this isolate was detailed in the following table.

Table: Susceptibility pattern of the S. pneumoniae isolate

Molecule	Susceptibility
Penicillin G	Resistant
Amoxicillin	Sensitive
Cefotaxime	Sensitive
Ceftriaxone	Sensitive
Gentamicin	Low-level resistance
Levofloxacin	Intermediate
Moxifloxacin	Sensitive
Erythromycin	Resistant
Clindamycin	Resistant
Vancomycin	Sensitive
Teicoplanin	Sensitive
Cotrimoxazole	Sensitive

Treatment:Cefotaxime 50 mg/Kg/8 hours **Outcome:** the patient's condition improved and the fever subsided.

Discussion

Children with nephrotic syndrome are susceptible to invasive bacterial infections (1). Spontaneous *S. pneumoniae* peritonitis's pathogenesis is still fully unknown. It is often presumed to be an hematogenous spread (2).

Conclusion

Primary bacterial peritonitis remain rare in adolescents. Surgeons are required to be aware of such an entity. Pneumococcal vaccines should be considered to prevent such infections in patients with a history of nephrotic syndrome.

1.Blevrakis E and al. Primary bacterial peritonitis in a previously healthy adolescent female: A case report. Int J Surg 2016;28:111-113. 2.Maraki S and al, Primary bacterial peritonitis caused by *Streptococcus pneumoniae*. J Global nfect Dis 2021;13:103-4.